
Shell Programming
Instructor Handout

Author: Reuben Francis Cornel

1 Contents

1. Why program using the shell

2. Different Shells

3. Different Initialisation Files

(a) All This will be put in a table and run through during the presentation

i. .profile

ii. .history

iii. .exrc

4. Basic Structure of Shell Programs

(a) Interpreter Line

(b) Comments

5. Variables

(a) assignment

(b) scope, also deals with effects of export on variables

(c) Command Line Arguments/Positional Paramters

(d) default values/Parameter Substitution

(e) existing Shell variables

i. This again will be put in a table and run through the presentation.

ii. PATH

iii. PS

6. Quoting in shells

(a) Weak Quoting

(b) String Quoting, Single Quoting

(c) Command Substitution, Back Quotes

7. test command

8. Constructs

(a) for

(b) if

(c) while

(d) do

(e) case...esac

9. Special Commands and notations

(a) trap

1

(b) exit

(c) break

(d) return

(e) set

10. Numeric Operations

(a) usage of $(())

(b) usage of bc — If required, since floating point operations can’t be per-
formed by the shell

11. String Operations

12. Writing Functions in Shell

13. Debugging Shell Programs

2 Why program using the shell

• It makes life easy. Batching a whole list of commands and putting them in a
file to make a script saves on time as well as the effect remembering all those
commands can have on your grey cells.

• Portability. If scripts are written using a very generic notation. Such as
notation used by the sh shell script. It can be ported to almost any unix

system readily.

3 Different Shells

• Bourne SHell [sh]: This was the first shell developed for unix . Most of
the shells we have today derive their syntax and semantics from the Bourne
Shell.

• C SHell [csh]: This was developed by Bill Joy at Berkeley. This shell is not
generally recommended for scripting because of the complexity of its syntax.

• Korn SHell [ksh]: The Korn Shell can be considered the superset of the
Bourne Shell as far as the features provided are concerned. But it is not fully
portable as the Bourne Shell, as some systems don’t support ksh.

• Bourne Again SHell [bash]: This is the GNU version of the Bourne shell
with some added features. Most Linux systems provide BASH.

4 Initialization Files

• .profile: This file is the file which is executed as soon as you login. As a Here give an exam-

ple of putting pro-

gram path in the

PATH variable. Men-

tion about .bashrc,

.bash profile for linux

result, most commands used to setup the terminal envirnoment are put in
this file.

• .exrc: This is the initialisation file for vi

Mention that this is

extra info

2

5 In the beginning there was ... The Interpreter Line

• Most shell scripts generally follow a standard pattern, which is shown below.

Interpreter Line Show example1. This
is an example for the
point.

commands

• The interpreter line if present, must always be on the first line, and it follows Show example1b.This
shows what happens if
the interpreter line is not
the first line.

the pattern.

#!<path to interpreter>

• If the interpreter line is not present, then in that case you have to run the Run example1b, from
the command line using
python.

script from the command line by specifically mentioning the interpreter.

6 Shell Script Execution

• To execute any shell script, first you have to set its executable permissions.
This is done as shown below.

chmod +x filename

• To execute the shell script, if you are present in the same directory as the
path all you have to do is type ./filename

7 Variables

7.1 Creating Variables

• Like most computer languages, the shell also provides variables. But unlike
most computer languages. The variables are not strongly typed.

• To create a new variable all you have to do is just assign a value to a variable Show example2. This
demonstrates assignmentname.A variable name has to start with a alphabet, but can contain numbers

later on, spaces are absolutely not allowed. The structure of this statement
is shown below. Show example2b.

Demonstrates what
happens if spaces are
there

<Variable Name>=<Value>

• Please note there is no space surrounding the “=”.

• To reference the variable you prefix the variable with a $. Explain this using exam-
ple2

• Another point to which you have to pay special attention is the fact that
shell variable names are case sensitive. They won’t raise an error when you
don’t declare them, but use them. This again could be a cause for a number
of bugs.

7.2 Scope of shell variables

• When a shell variable is assigned a value. Its scope is limited only to the Show example2c.
Echo variable hello.current shell process. Therefore if a sub-shell is started it is oblivious of the

value of a variable declared in the parent shell.

3

• The export command is used to increase the visiblity of a Show example2d.
Echo variable hello.

• To be emphasised, once you export a shell in a terminal window,
and open another terminal window, the variable is not visible in
that shell process shell variable. Therefore its visibility extends to children
shells of the current parent shell.

• If a variable declared in the parent shell is modified in the child shell, its Show example2e, ex-

ample2e1. Example2e
calls example2e1

changed value is not reflected in the parent shell.

• If we want the change reflected in the parent shell, we have to source the Show example2f, ex-

ample2e1. Example2f
calls example2e1

script. This is nothing but running the script in our current interactive shell
process than in a new shell process. The usage of this feature is shown below.

. <script name>

The underscore represents a space

7.3 Positional Parameters

• There are a set of variables called positional parameters, using which you can Show example3.
Demo for positional
parameters

access values passed from the command line. These are represented starting
from $0...$9. $0 represents the name of the executable. Whereas the variable
$1...$9 represent the arguments passed to the command. Ok, so we can access
nine parameters but what if we want to access the tenth parameter.

• There are a couple of variables, symbolically $* which helps us access more Show example4.

than one variable.

• We have another variable on lines of $*, symbolically $@. This helps with Show example4a.

accessing arguments which have spaces between them.

• Now that we can have access to all arguments, what if we want to access the Show example5.

number of arguments. The variable $# lets us do that.

• We have another positional parameter $?. This parameter gets us the return
value of the previously executed command. This can be used to check if the
previous command has executed properly.

7.4 Default Values

• There are times when we would want a variable to have a default value rather
than null. The shell provides us a feature which lets us assign a default value Show example6.

to a variable. Its sytax is as shown below.

echo ‘‘${name:=reuben}’’

7.5 Environment Variables

• The shell provides us with a set of variables which control our environment.

• The list of most frequently used environment variables is given in the table
below.

4

Variable Meaning
PATH This variable is a list of paths

which the shell will search for a
program to execute.

PS1 This variable represents the text
which is displayed at the com-
mand prompt

PS2 This variable signifies the text
displayed by the secondary com-
mand prompt

LOGNAME This variable stores the user name
of the person using the terminal.

IFS This variable specifies the char-
acters which act as seperators in
lists

HOSTNAME This variable specifies the host-
name of the current computer the
user has logged onto.

• To get a full listing of variable you can type env.

8 Quoting in Shell

• The shell provides us with three types of quotes, which are used depending
on the situation.

• Quoting is typically used when you want to pass the entire string to a com-
mand.

• Weak Quoting: Enclosing a string with double quotes is weak quoting. If a Show example7. This
is for all three pointsstring is weak quoted all variables in the string will be substituted with their

corresponding values, and other double quotes will have to be “escaped”.

• Strong Quoting: When we enclose a string in single quotes. The shell does
not interpret any special charaters or varibles in the string. But it has to be
noted that single quotes in the string will have to be escaped.

• Command Substitution: There are times when we need the output of
a program to be used. In cases like this command substitution comes in
helpful. We use back quotes for command substitution.

9 Shell Programming Constructs

• Since the shell is quite a bit like a programming language, it provides us with
a number of constructs which perform their job well but cannot be compared
with their counterparts from full fledged programming languages.

• When using the constructs shown here, please use them verbatim.

5

9.1 if

• This is one of the most basic control structures provided by the shell. Its
syntax is as follows.

if command is successful

then

execute commands

elif command is successful

then

execute commands

else

execute commands

fi

• The command can be any unix program. But generally the program put Show example9.
Demo for basic test
operation

here is a test program. This program serves the purpose which relational
operators serve. Emphasise that if uses the return value

• But fortunately, the test command can be abbreviated using []. Therefore, Show example9.
Demo for [] operationconditions can be as follows [$x -eq $y]

Option Meaning
Numeric Comparision
-eq Equal to
-ne Not Equal
-lt Less than
-le Less than and equal to
-gt Greater Than
-ge Greater than and equal to
String Comparisions
s1 == s2 String s1 equals to string s2
s1 != s2 String s1 not equal to string s2
-z s1 String s1 is null
File Operations
-f File Exists
-r File is readable
-w File is writable
-x File is executable
-d File is a directory

9.2 case

• Case statement here provides the multiple branching facility. Its syntax is as Show example11.

given below.

case expression in

patterns) commands ;;

patterns) commands ;;

...

esac

6

• The pattern can contain shell wildcards, such as *, ? etc

9.3 for

• The shell for loop, iterates over a list of elements until all the elements of the Show example8

list are exhausted. The seperator used is specified by the IFS variable. Its
syntax is given below

for variable in list

do

execute commands

done Show example8a, 8b.
This is a chocolate ques-
tion. Ask what is the
outcome of this9.4 while

• The while statement is a iterative statement which iterates as long as the
condition is true. Like the if statement it uses the return value of the com- Show example12

mand. This means that you can use the abbreviated form of test command
here. The syntax is as shown below.

while command is successful

do

execute commands

done

10 Special Commands

• Apart from these contructs the shell also provides a small set of commands
which help in control flow.

Command Syntax Meaning
trap trap command signal-list This command is used in

cases where there is a prob-
ability of the script being
stopped in the middle, it
perform clean up operations
specified by command

exit exit The script exits
break break Control from a while or a for

loop is broken
return return Used as a return from func-

tions
set set arguments Assigns arguments to posi-

tional parameters.

11 Math Operations using the Shell

• There are 2 ways of doing math operations using the shell. All basic math Show example13

operators are supported by the shell.

7

– expr: This command evaluates the expression given to it.

– $((expression)): This is an abbreviated form, used for math opera-
tions.

12 String Operations

• Concatenation: To concatenate two strings all you have to do is refer one Show example14

shell variable after another with out a space

• Length of String: We can use the expr command to find the length of a
given string. The syntax is given below.

expr "thbs" : ".*"

• Extracting a substring: Again the expr command can be utilised to ex-
tract a substring from a given string.

expr "thbs" : ’..\(..\)’

13 Functions in Shell

• The syntax of shell functions are as shown below.

function name() {
statements

return value

}

• Arguments are passed using the positional parameters which can be passed Show example15

as if calling any other function.

• The return statement takes a numerical argument only.

14 Debugging Shell Scripts

• Now that you have completed writing your shell script which you consider
a piece-de-resistance. You discover there is an irritating bug. Here our old
friend set comes in helpful. All you have to do is include set -x in the Show example16

script. This command gives you the execution trace of the script.

The original copy of this document can be obtained from www.geocities.com/reuben cornel.
This document is released under GNU Free Documentation License, Version 1.1 or any later

version published by the Free Software Foundation with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

8

