
Awk

Author: Reuben Francis Cornel

1 What is AWK?

• AWK is a programable filter developed with the aim of using it to generate formatted
reports from data.

• Althought is uses addresses like sed to perform operations it differs from sed in the way
data is handled.

2 Why use AWK instead of Perl?

• Perl can be used to handle most of the operations which AWK can do. To be precise AWK
is a subset of perl.

• The main reason why AWK comes in more handy than perl is because of its ease of use
and clean syntax.

3 Uses Of AWK

• Apart from report generation, AWK can be used as a pseudo C interpreter.

• As a result it can used to prototype small tools.

• A less known aspect of AWK is that it can be used in AI programming, specially because
of its ability to act on patterns.

4 Basic Structure Of AWK Programs

• The basic organisation of awk programs follows the pattern shown below.

/pattern/ {actions}

• The pattern could be a regular expression or a numeric comparison.

• Either the pattern or the action can be left out.

– If the pattern is left out. The action is applied to every line

– Can you guess what happens if the pattern is left out?

– There are two special cases for patterns

∗ BEGIN { }: This statement is executed at the start of processing

∗ END { }: This statement is executed at end of processing

5 Running AWK programs

• There are 3 major ways of running AWK programs.

– One Shot Programs: Example shown before was a one shot program

– Long AWK programs: Here we use the -f option of awk.

– Executable AWK programs: We set executable permission of the awk program and
add the interpreter line.

1

6 Syntax Elements Of Awk Programs

6.1 Awk Variables

• Awk gives us three types of variables

– User Defined Variables

– Positional Variables

– Special Variables

6.1.1 User Defined Variables

• This is the variable you create.

• Creating these variables require no prior declaration like C for example you want to create
a variable all you have to do is assign a value to that variable name. For example test=1

• But what happens if you refer to a variable which you have not defined previously?

• Now what would happen if we define a variable which has a name of a inbuilt function

6.1.2 Positional Variables

• A positional variable is one which is prefixed with the $ sign. This represents a particular
field in the record.

• Whitespaces are used as delimiters for fields

• There is a special positional variable $0. This represents the entire line read in by awk.

• When you do a print $0 you print the whole line. But is there another way to print the
same?

6.2 Operators

• Awk provides us with three types of operators

– Math Operators

– Relational Operators

– Regular Expression Operators

• The table below is the list of mathematical operators

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
++ Auto increment
-- Auto decrement
+= Add result to variable

continued on the next page

2

Math Operators (continued)

Operator Meaning
-= Subtract result from variable
*= Multiply variable by result
/= Divide variable by result
%= Apply modulo to variable

• The table below is a list of relational operators

Operator Meaning
== Is equal to
!= Is not equal to
> Greater than
>= Greater than
< Lesser than
<= Lesser than

• Finally we have operators for regular expressions

Operator Meaning
~ Pattern matches String
!~ Pattern Does not match

6.3 Awk Keywords

• Most awk commands have been taken over from C. Therefore most of you would be familiar
with most of the basic syntax. Nonetheless the table below is a reference to the syntax.

Syntax Meaning
if(conditional) statement [else
statment]

If Else Construct

while (conditional) statement While Construct
for (expression ; conditional ; ex-
pression) statement

Typical For Construct

for (variable in array) statement This is a variation of the above
for, similar to the shell for com-
mand

break Break a loop
continue Get on with the next iteration
{ [statement] ...} Blocks
variable=expression Assignment
print [expression-list] Standard Print
printf format [, expression-list] formatted output
exit Exits the interpreter

3

7 Special Variables

• Awk provides us with special variables using which we can change certian properties of
awk, such as the delimiter that seperates fields or records.

7.1 FS – Field Seperator

• This variable represents the string which seperates fields in a record. By default this is a
single space.

• Since not all records use spaces for delimiters changing this field lets you change the de-
limiter.

7.2 RS – Record Seperator

• This by default is a newline character.

• Sometime we have records which span across multiple lines. So in a we have to change the
string which acts like a delimiter. The RS varible helps us do this.

7.3 NF – Number of Fields

• This is variable represents the number of fields. This comes in helpful when you have to
change operation of the program based on the number of fields avaliable.

7.4 NR – Number of Records

• This variable represents the number of records that have been processed.

7.5 OFS – Output Field Seperator & ORS – Output Record Seperator

• Sometimes a program has to provide a input to a filter and that filter which uses a different
output field and record seperator. In suc a case you can use awk to act like an adaptor.

• OFS - is the character which is printed as the field delimiter when you print a number of
fields

• ORS - is the character which is printed as the record delimiter.

8 Associative Arrays

• Instead of the regular arrays, awk provides us with associative arrays.

• Associative arrays unlike conventional arrays can use anything as subscripts.

• This comes in helpful when you have to perform count operations to generate reports.

9 Formatted Output using printf

• Awk provides us with printf so that our output can be formatted to fit, certain specifica-
tions.

• Below shown is a list of format specifiers

4

Format Specifier Meaning
%c ASCII Character
%d Decimal integer
%e Floating Point number (engineer-

ing format)
%f Floating Point number (fixed

point format)
%o Octal
%s String
%x Hexadecimal
% Literal %

• The basic format specifier syntax is as shown below

%[+-]?[0-9]*.?[0-9]*[specifier]

• Below are some example how to use the specifiers

Statement Meaning
x = ”Baryshnikov”
printf(”[%16s]”,x) [Baryshnikov]
printf(”[%-16s]”,x) [Baryshnikov]
printf(”[%.3s]”,x) [Bar]
printf(”[%16.3s]”,x) [Bar]
printf(”[%-16.3s]”,x) [Bar]
printf(”[%016s]”,x) [00000Baryshnikov]
printf(”[%-016s]”,x) [Baryshnikov]
x = 312
printf(”[%8d]”,x) [312]
printf(”[%-8d]”,x) [312]
printf(”[%08d]”,x) [00000312]
printf(”[%-08d]”,x) [312]
x = 251.673209
printf(”[%16f]”,x) [251.67309]
printf(”[%-16f]”,x) [251.67309]
printf(”[%.3f]”,x) [251.673]
printf(”[%16.3f]”,x) [251.673]
printf(”[%016.3f]”,x) [00000000251.673]

• printf and print also allow you to write the output into a file using the > and the >> symbol.

10 String Functions

• It is important to remember that strings in awk are handled as a full data type and not
like a array of characters in C.

• Below is a list of commonly used string functions in awk

5

Function Meaning
index(string,search) Returns the location of search

string in the given string else 0
length(string) Prints the lenght of the string
split(string,array,separator) Splits a given string into an array

based on supplied seperator
substr(string,position,max) extracts substring from the given

string starting at mentioned po-
sition and for a given lenght of
characters

sub(regex,replacement,string) substitutes one regular expression
instance in string with replace-
ment

gsub(regex,replacement,string) substitutes all regular expression
instances in string with replace-
ment

11 Command Line Options

• Awk allows you to perform command line initialization of variables, using arguments to
the awk command. Some of the most common arguments are given below

Option Meaning
-F Lets you can specify the feild

seperator here
-f File from which the program is to

be executed
-v var=val Lets you can initialise a specific

variable from the command line

The original copy of this document can be obtained from www.geocities.com/reuben cornel.

This document is released under GNU Free Documentation License, Version 1.1 or any later version published

by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

6

