
Awk
Instructor Handout

Author: Reuben Francis Cornel

1) What is AWK

2) Why Learn AWK

3) Basic Operation of AWK

4) Running AWK programs

5) Syntax

5.1) Math Operators

5.2) Assignment Operators

5.3) Relational Operators

5.4) Regular Expressions

5.5) Commands

6) AWK Variables

6.1) FS

6.2) NR

6.3) RS

6.4) NF

6.5) OFS, ORS

7) Associative Arrays

8) Formatted Output

7.1) printf

7.2) Escape Sequences

9) String Functions

8.1) Length

8.2) Index

8.3) Substr

1 What is AWK?

• AWK is a programable filter developed with the aim of using it to generate formatted
reports from data. sed handles data

as plain text,

But for AWK all

lines are records

having fields

• Althought is uses addresses like sed to perform operations it differs from sed in the
way data is handled.

2 Why use AWK instead of Perl?

• Perl can be used to handle most of the operations which AWK can do. To be precise
AWK is a subset of perl.

• The main reason why AWK comes in more handy than perl is because of its ease of
use and clean syntax.

3 Uses Of AWK

• Apart from report generation, AWK can be used as a pseudo C interpreter.

1

• As a result it can used to prototype small tools.

• A less known aspect of AWK is that it can be used in AI programming, specially
because of its ability to act on patterns.

4 Basic Structure Of AWK Programs

• The basic organisation of awk programs follows the pattern shown below. Show

example1

/pattern/ {actions}

• The pattern could be a regular expression or a numeric comparison.

• Either the pattern or the action can be left out.

– If the pattern is left out. The action is applied to every line The pattern is

copied to the

output
– Can you guess what happens if the pattern is left out?

– There are two special cases for patterns

∗ BEGIN { }: This statement is executed at the start of processing Show

example4∗ END { }: This statement is executed at end of processing

5 Running AWK programs

• There are 3 major ways of running AWK programs.

– One Shot Programs: Example shown before was a one shot program

– Long AWK programs: Here we use the -f option of awk. Show exam-

ple12 after

removing the

interpreter

line

– Executable AWK programs: We set executable permission of the awk program
and add the interpreter line.

6 Syntax Elements Of Awk Programs

6.1 Awk Variables

• Awk gives us three types of variables

– User Defined Variables

– Positional Variables

– Special Variables

6.1.1 User Defined Variables

• This is the variable you create.

• Creating these variables require no prior declaration like C for example you want
to create a variable all you have to do is assign a value to that variable name. For Show

Example3example test=1

• But what happens if you refer to a variable which you have not defined previously? Show

Example3a
• Now what would happen if we define a variable which has a name of a inbuilt Show

Example3bfunction

2

6.1.2 Positional Variables

• A positional variable is one which is prefixed with the $ sign. This represents a show example 1

and explainparticular field in the record.

• Whitespaces are used as delimiters for fields

• There is a special positional variable $0. This represents the entire line read in by
awk.

• When you do a print $0 you print the whole line. But is there another way to just print does

the jobprint the same?

6.2 Operators

• Awk provides us with three types of operators

– Math Operators

– Relational Operators

– Regular Expression Operators

• The table below is the list of mathematical operators

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
++ Auto increment
-- Auto decrement
+= Add result to variable
-= Subtract result from variable
*= Multiply variable by result
/= Divide variable by result
%= Apply modulo to variable

• Show example13

• The table below is a list of relational operators

Operator Meaning
== Is equal to
!= Is not equal to
> Greater than
>= Greater than
< Lesser than
<= Lesser than

3

• Finally we have operators for regular expressions

Operator Meaning
~ Pattern matches String
!~ Pattern Does not match

• Mention ! is used for negation. Show Example14

6.3 Awk Keywords

• Most awk commands have been taken over from C. Therefore most of you would be
familiar with most of the basic syntax. Nonetheless the table below is a reference
to the syntax.

Syntax Meaning
if(conditional) statement [else
statment]

If Else Construct

while (conditional) statement While Construct
for (expression ; conditional ; ex-
pression) statement

Typical For Construct

for (variable in array) statement This is a variation of the above
for, similar to the shell for com-
mand

break Break a loop
continue Get on with the next iteration
{ [statement] ...} Blocks
variable=expression Assignment
print [expression-list] Standard Print
printf format [, expression-list] formatted output
exit Exits the interpreter

7 Special Variables

• Awk provides us with special variables using which we can change certian properties
of awk, such as the delimiter that seperates fields or records.

7.1 FS – Field Seperator

• This variable represents the string which seperates fields in a record. By default this
is a single space.

• Since not all records use spaces for delimiters changing this field lets you change the show

example5delimiter.

7.2 RS – Record Seperator

• This by default is a newline character.

• Sometime we have records which span across multiple lines. So in a we have to show

example6change the string which acts like a delimiter. The RS varible helps us do this.

4

7.3 NF – Number of Fields

• This is variable represents the number of fields. This comes in helpful when you show

example7have to change operation of the program based on the number of fields avaliable.

7.4 NR – Number of Records

• This variable represents the number of records that have been processed. show

example8

7.5 OFS – Output Field Seperator & ORS – Output Record Seperator

• Sometimes a program has to provide a input to a filter and that filter which uses show

example9a different output field and record seperator. In suc a case you can use awk to act
Emphasise that

print $1 $2 is dif-

ferent from print

$1, $2. And

OFS works only

with the later.

like an adaptor.

• OFS - is the character which is printed as the field delimiter when you print a
number of fields

• ORS - is the character which is printed as the record delimiter.

8 Associative Arrays

• Instead of the regular arrays, awk provides us with associative arrays. show

example10
• Associative arrays unlike conventional arrays can use anything as subscripts.

• This comes in helpful when you have to perform count operations to generate reports.

9 Formatted Output using printf

• Awk provides us with printf so that our output can be formatted to fit, certain
specifications.

• Below shown is a list of format specifiers

Format Specifier Meaning
%c ASCII Character
%d Decimal integer
%e Floating Point number (engineer-

ing format)
%f Floating Point number (fixed

point format)
%o Octal
%s String
%x Hexadecimal
% Literal %

• The basic format specifier syntax is as shown below

%[+-]?[0-9]*.?[0-9]*[specifier]

• Below are some example how to use the specifiers

5

Statement Meaning
x = ”Baryshnikov”
printf(”[%16s]”,x) [Baryshnikov]
printf(”[%-16s]”,x) [Baryshnikov]
printf(”[%.3s]”,x) [Bar]
printf(”[%16.3s]”,x) [Bar]
printf(”[%-16.3s]”,x) [Bar]
printf(”[%016s]”,x) [00000Baryshnikov]
printf(”[%-016s]”,x) [Baryshnikov]
x = 312
printf(”[%8d]”,x) [312]
printf(”[%-8d]”,x) [312]
printf(”[%08d]”,x) [00000312]
printf(”[%-08d]”,x) [312]
x = 251.673209
printf(”[%16f]”,x) [251.67309]
printf(”[%-16f]”,x) [251.67309]
printf(”[%.3f]”,x) [251.673]
printf(”[%16.3f]”,x) [251.673]
printf(”[%016.3f]”,x) [00000000251.673]

• printf and print also allow you to write the output into a file using the > and the >> show

example11symbol.

10 String Functions

• It is important to remember that strings in awk are handled as a full data type and
not like a array of characters in C.

• Below is a list of commonly used string functions in awk show

example12

Function Meaning
index(string,search) Returns the location of search

string in the given string else 0
length(string) Prints the lenght of the string
split(string,array,separator) Splits a given string into an array

based on supplied seperator
substr(string,position,max) extracts substring from the given

string starting at mentioned po-
sition and for a given lenght of
characters

sub(regex,replacement,string) substitutes one regular expression
instance in string with replace-
ment

gsub(regex,replacement,string) substitutes all regular expression
instances in string with replace-
ment

6

11 Command Line Options

• Awk allows you to perform command line initialization of variables, using arguments
to the awk command. Some of the most common arguments are given below

Option Meaning
-F Lets you can specify the feild

seperator here
-f File from which the program is to

be executed
-v var=val Lets you can initialise a specific

variable from the command line

The original copy of this document can be obtained from www.geocities.com/reuben cornel.

This document is released under GNU Free Documentation License, Version 1.1 or any later version

published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts.

7

