
Stream EDitor

Author: Reuben Francis Cornel

1 Regular Expressions

• A regular expression is a pattern which describes a certain amount of text.

• A regular expression is processed using a “Regular Expression Engine”

• It is important to realise that the regular expression engine will always return the left most
match, even if there is a better match to the right of the string.

1.1 Literal Characters

• The most basic regular expression is a Single literal character.

• A Literal character is nothing but a simple printable or a non printable character

1.2 Special Characters

• Some characters are reserved for special purposes. These characters could be used to select
one or more that one character, negate the selection so on and so forth.

1.3 Character Classes

• You can use a character class to match a single character from a list of several characters.

• They are represented using [](square brakets)

Example: the regular expression gr[ae]y will match grey or gray.

• You can use the hypen “-” to specify a range of characters.

Example: The expression [0-9] will match a single digit. But can you tell
me what sort of character will the expression [0-9a-fA-F] match.

1.3.1 Negated Character Classes

• Typing a caret after the opening square bracket will negate the character class. The result
of this is that the character class will not match the characters which are present in the
character class.

1.3.2 Special Characters in Character Classes

• The only special characters, which have meaning, inside the character class are

– Closing square bracket

– Backslash

– Caret

– Hypen

1

1.4 The ’.’ Operator

• The dot is used to match any characters which the exception of new line characters.

• You have to be careful when using the dot, because sometimes it might match something
which you don’t intend it to match.

1.5 Anchors

• Unlike literal and special characters, the regular expression engine will try and match
positions, such as the begining and end of strings.

• The ˆ(caret) matches the start of the line

• The $ (dollar) matches the end of line.

• One of the useful cases, where anchors are used is to clean up blank lines.

Example: The command shown below can be used clean up blank line in vi

:%/^$/d

1.6 Optionals

• The question mark(?) symbol tell the regular expression engine that the preceding expres-
sion is optional. That is the expression may or may not occur.

Example: The expression colou?r will match colour or color

1.7 Repetitions with + and *

• We have two other repetition operators as far as regular expression are concerned. First is
the * (asterix) that matches zero or more occurences of the expression. Then we have
the + (plus) sign which matches one or more occurences of the regular expression.

• Warning: remember that both + and * are “greedy”. That means that they will continue
looking for the largest possible match even if they have found a match.

• Could you suggest a better Regular Expression to get the tag values?

1.7.1 Limiting repetition

• You can use the flower bracket({}) to specify the number of times a regular expression may
be repeated

• The syntax of using {} is as follows

<Regular Expression>{min, max}

• min represents the minimum number of times a regular expression may be repeated.

• max represents the maximum number of times a regular expression may be repeated.

• Mentioning the minimum number is mandatory, where as you need not mention the maxi-
mum number. If you don’t mention the maximum number

2

1.8 Alternating

• Using alternation you can match a single regular expression out of several regular expres-
sions.

• This is represented using the | (pipe symbol).

Example: You can use (cat|dog) to match either cat or dog in a input string.

• Warning: Remember the regular expression engine is eager it will stop the minute it finds
the first match. So you have to make sure that your regular expression describes the right
match.

Example: If my regular expression is Get|GetValue|Set|SetValue Can anyone
explain how this regular expression matches the string “SetValue”.

1.9 Back references

• Round brackets are used to create groupings of regular expression.

• Apart from grouping regular expressions, these bracket also create “Back References”.

• A Back Reference is nothing but a section of text that has been stored since it matches a
regular expression.

• Generally the text is stored in variables whose names are numbered for example, in sed
the backreference text is stored in variables of name \1, \2 etc, in perl back references are
stored in variable with names such as $1, $2 etc.

1.10 Exercises

• Write a regular expression to match ip addresses.

2 Sed

2.1 Uses Of Sed

• Text modifications on the fly.

2.2 Command Line Arguments

• -n This command line argument tells sed not to copy the input to the output.

• -e This command tells sed to take the next argument as another editing command.

• -f This command tells sed to take argument as the file and interpret it line after line.

2.3 Basic Operation

• The basic structure of the editing command in sed is given as follows.

[address1, address2][function][arguments]

• One or both of the addresses may be omitted.

• The function must be present

3

• The argument is either mandatory or optional based on the type of function the argument
is used for.

• The order of applying the is sequential. But this can be changed based on the branching
commands.

2.3.1 The Pattern Space

• The line which is read in by sed by default is put into a buffer called the pattern space.
This is the place where all sorts of butchery is performed on the text.

2.4 Addresses

• Lines to which the editing commands are to be applied can be selected by addresses.

• These addresses may be context based addresses or Line based addresses

2.4.1 Line Addressing

• As the name suggests line based addressing means that you directly refer to the line number
for which you want to apply your editing command.

• The line number is reset to zero when a new file is opened.

• The special case for line number addressing is $ which represents the last line.

2.4.2 Context Based Addressing

• A context based address looks for the lines which match the regular expression which is
being searched.

• The regular expressions used by sed is as discussed above in the regular expressions section
of this handout.

• If there is a need to use special characters in the regular expression, those characters would
have to be preceded by a \

2.4.3 Number of addresses

• The sed commands can take 0, 1 or 2 addresses. Below we will see the affects of giving the
specified number of addresses.

• No Address: When you give no address the command is applied to every line.

• 1 Address: The command is applied to all lines that match that address.

• 2 Addresses: The command is applied to the first line which matches the address and all
subsequent lines till the line which matches the second address.

2.5 Functions

2.5.1 Whole Line Oriented Functions

• d – This function deletes the lines from the input, which match the address given to it.
But there is no change done to the original file.

4

• When the “d” function is executed for a line, a new line is read in from the input the list
of command is restarted for the newline read in.

• n – This function reads the next line from the input, replacing the current line in the
pattern space.

• The flow of editing commands continues on the new line read in.

• a – This function outputs the given lines of text after the line which matches the pattern.

• This function can append any number of lines to the output.

• These lines can be seperated by newlines but must have a \at the end.

Example:
a\
Test

• i – This function adds lines to the output just before the line which matches the address.
All other comments are as for the previous command.

• c – This function changes the lines which have been selected by the address. It deletes the
original lines and replaces them with the text which is supplied.

2.5.2 Substitute Function

• The function changes parts of lines selected by a context search within the line. The general
syntax of this command is given below.

s/<pattern>/<replacement>/<flags>

• The delimiter used to seperated the pattern, replacement and flags fields in the above
example is a \. But this can be replaced by anything as long as you use the same character
as delimiter.

• The pattern is a regular expression.

• The replacement is not a regular expression. The only characters which have special mean-
ings are

– & which signifies the pattern and

– \d where d represents an integer for the corresponding pattern enclosed in \(\)

• The flags may contain any of the following flags

– g – substitute all occurences of the pattern.

– p – print the line if the substitution was successful.

– w <filename> – writes the substituted line to a file.

2.5.3 Input-Output Functions

• p – This command prints the lines to the output as soon as this command is encountered.

• w <filename> – This command writes the addressed lines a file. There must be exactly
one space seperating w and the filename. A max of 10 different filename can be mentioned
in different w commands.

• r <filename> – This command command reads the given file and prints the lines to the
output.

5

2.5.4 Multiple Input Line Functions

• N – The next line is appended to the pattern space and the two lines are seperated by \n.
This can be used to match patterns across lines.

• P – This command prints the part of the text from the pattern space till the first \n

2.5.5 Hold and Get Functions

• sed has a buffer space called the “hold” space which can be used to save text for further
modification. The functions that help us use this space is called the hold and get functions.

• h – copies contents of the pattern space to the hold space destroying its previous contents.

• H – copies and appends the copied contents to the contents of the hold space. The lines
are seperated using \n.

• g – get contents of the hold area into pattern space, destroying what was previously present.

• G – get contents of the hold area into pattern space, appending to what was previously
present in the pattern space.

• x – this command exchanges the contents of the pattern and hold spaces.

2.5.6 Control Flow Functions

• These functions do not do any editing to the selected lines instead they control the flow of
how the functions are applied to the lines.

• ! – This command is applied to all lines which are not selected by the address lines.

• {} – This command helps you group all editing commands into blocks. These blocks can
be nested.

• :<label> – This command places a label to which branch commands can jump. The label
at max can have only 8 characters. If a label already exists an error will be generated.

• :b <label> – This command causes the execution to jump to the label specified uncondi-
tionally

• t <label> – This command branches to a label only is a successful substitution has been
made previously on the same line.

2.5.7 Miscellaneous Functions

• =: This function writes the line number to the standard output.

• q: This function causes execution of sed to be terminated, this function will print any lines
which have to be printed before quitting.

2.6 References

• www.regular-expressions.info

• http://sed.sourceforge.net/grabbag/

The original copy of this document can be obtained from www.geocities.com/reuben cornel.

This document is released under GNU Free Documentation License, Version 1.1 or any later version published

by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

6

